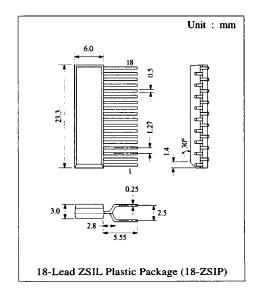
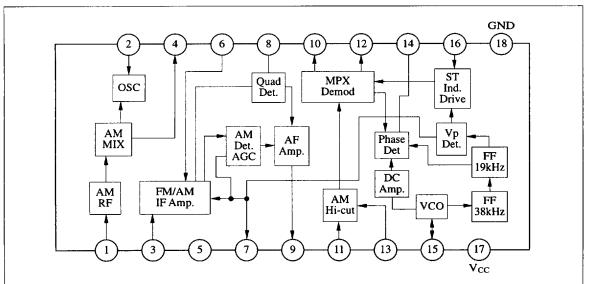
AN7024


AM Tuner, FM-IF + MPX IC for Radio, Radio Cassette Recorder

Description


The AN7024 is a monolithic integrated circuit incorporating AM-Tuner, FM-IF, FM-MPX and demodulation circuit which is most suitable for radio cassette recorder. Integration into 18-pin ZIL package makes possible to reduce external parts. (7 pieces reduced by in-house comparsion)

Features

- Incorporating on a single chip (AM Tuner, FM-IF, FM-MPX)
- Fewer external parts
- Built-in stereo indicator
- V_{CC} range: V_{CC} = 3V ~ 7V

Block Diagram

■ 6932852 0013708 163 **■**

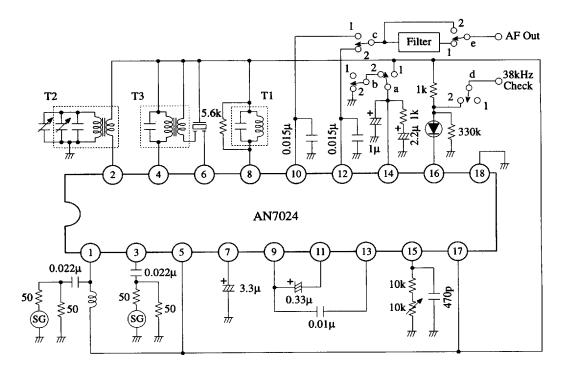
■ Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Rating	Unit
Supply Voltage	V _{cc}	7	v
Supply Current	I _{CC}	30	mA
Power Dissipation	P _D	210	mW
Operating Ambient Temperature	Topr	-20 ~ +70	°C
Storage Temperature	Tstg	-55 ~ +150	°C

Operating Supply Voltage Range: $V_{CC} = 3.0V \sim 7.0V$

■ Electrical Characteristics (V_{CC}=5V, Ta=25°C)

Item	Symbol	Condition	min.	typ.	max.	Unit
FM						
Total Circuit Current	I _{tot(FM)}	Stereo no input		14	:	mA
Signal to Noise Ratio	S/N _(FM)	V _{in} = 80dBμ, Stereo		66		dB
Detection Output Voltage	V _{O(FM)}	V _{in} = 80dBμ, Monaural	67	89	119	mV
Limiting Sensitivity	V _{L(FM)}	Input which V _{O(FM)} decreases by 3dB, Monaural	31	34	37	dΒμ
AM				•		•
Detection Output Voltage	V _{O(AM)}	$V_{in} = 60 dB \mu$	47	63	84	mV
Sensitivity	V _G	$V_{o(AM)} = 20 \text{mV}$	2.5	8	13.5	dΒμ
Total Circuit Current	I _{tot(AM)}	No input		11		mA
Signal to Noise Ratio	S/N _(AM)	$V_{in} = 60 dB \mu$		44		dB
MPX						
Channel Balance	СВ	V _{in} = 80dBμ, Monaural		0		dB
Stereo Separation	Sep	V _{in} = 80dBμ, Stereo	36	46		dB
Total Harmonic Distortion	THD	V _{in} = 80dBμ, Stereo		0.5	1.5	%
Stereo Lamp ON Level	V _{P(ON)}	$V_{in} = 80dB\mu$, Modulation indication		4.2	8.0	%
Stereo Lamp OFF Level	V _{P(OFF)}	V _{in} = 80dBμ, Modulaton indication	0.9	2.3		%


Note) Unless otherwise specified,

FM: monaural; f_{in} = 10.7MHz, 1kHz 30% modulation

Stereo; $f_{in} = 10.7$ MHz, 1kHz 100% modulation (L + R = 90%, pilot 10%).

AM: -----; $f_{in} = 1$ MHz, 400Hz 30% modulation

■ Explanation of Test Circuit and Test Methods

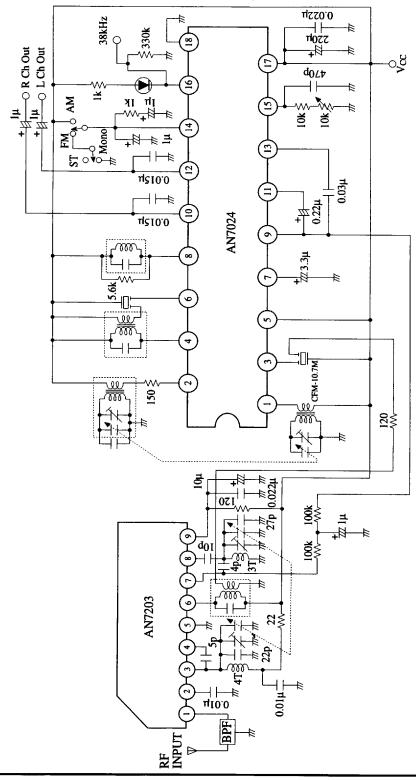
Switch

a ··· 1 AM 2 FM c ··· 1 R-channel Output 2 L-channel Output

b ··· 1 Stereo 2 Forced Mono d ··· 1 AM 2 FM 38kHz Check

e ··· 1 Stereo Signal Output 2 Mono Signal Output

Note:


- (1) Free-running must be adjusted to 38kHz ± 100Hz
- (2) 470pF Styrole or Polyster Capacitor
- (3) Low Pass Filter used for BL-13 or BL-14
- (4) Stereo output signal is external modulated to FM-SG

Coil Specifications

Symbol	Use, Freq.	Type No.	Maker	Connection Diagram	Number of Turns	Tuning Cap.	Unloaded Q
T1	FM Quad Coil 10.7MHz	IFT-41K9	MITSUMI		①② 7T ②③ 4T ④⑥ 2T	100pF	90±20%
Т2	AM MW Osc. Coil	L-5K7-H4	MITSUMI		①③ 87T ④⑥ 6T		100±20%
Т3	AM MIX Output 455kHz	IFT-21K7 H-4	MITSUMI	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	① ··· ② 10T ② ··· ③ 43T ④ ··· ⑥ 14T	1500pF	130±20%

■ 6932852 0013710 811 **■**

■ Application Circuit of AN7203 and AN7024

Panasonic

-- 6932852 0013711 758 **--**

92

■ Pin Descriptions

Pin No.	Pin Name	DC Voltage	Equivalent Circuit	Description
1	AM RF Input	5V	V _{CC} V	Configuration of RF amp is differential amp. Input of base T1 & T3 need dc bias via external coil to V _{CC} . Usable sensitivity is better if antenna coil is used. AGC operates when T1 & T2 are off, T3 & T4 are on, becoming differential amp for small signal. On the other hand, when T1 & T2 are on, T3 & T4 are off, becoming differential for large signal.
2	AM Oscillator	5V	V	Configuration of OSC circuit is a differential amp. Note that OSC stops when Q factor of external coil is low. To test for OSC stop, use bare hand to touch on the secondary coil pins. In good case, when hand is removed, OSC restarts. Resistor R is for the prevention of stop OSC. If R=0, then at V _{CC} "ON", there is no DC loading and T1 & T2 are not "ON", there will be no oscillation. Level at pin 2 is 120mV.
3	FM IF IN	5V	VCC VCC WIF IN IF IN	Input impedance decided by 500Ω internal resistor. Limiting amp configuration is a 5-stages differential amp. The total gain is $60dB$.
4	AM MIX OUT	5V	V _C	Mixer configuration is double-balanced mixer. Oscillation leakage is minimized.
6	AM IF IN	5V	V _{CC} V _{CC} AM if in	AGC operates by controlling the emitter current of first stage IF amp. Input impedance decided by $2.5k\Omega$ resistor. AM IF amp configuration is 3-stages differential amp. The total gain is 60dB.

■ 6932852 0013712 694 **■** 93

■ Pin Descriptions (Continue)

Pin No.	Pin Name	DC Voltage	Equivalent Circuit	Description
7	AGC & MPX Pilot Signal Detector	1.4V	3.3µ277	AGC output impedance is $110k\Omega$. Phase detector LPF output impedance is $10k\Omega$. Common value $3.3\mu F$ capacitor at pin 7. Cannot connect low impedance circuit to pin 7.
8	FM Detector	5V	5.6k \$\frac{1}{2} \\ \frac{1}{2} \\	FM detector configuration is quadrature detector. Phase shift capacitor is located internally. $5.6k\Omega \ resistor \ affects \ detector \ output \ level \ \& \ harmonic \ distortion.$
9	Detector Output	AM 0.3V FM 0.7V	V _{CC} Ø Ø AM O Ik Ø I	Common for both AM & FM. Output impedance is 1kΩ.
10	MPX Output	1.2V	π 0.015μ π Vcc	Output circuit configuration is a current mirror. Output impedance is 5kΩ. Time constant & de-emphasis is 75μs, determined by external capacitor 0.015μF.
12			1 5 k	Output dynamic range is fixed at 800mV. No effect by V_{CC} .
11	MPX IN	0.7V	777 0.22µ 777797177011777177 Ф V cc	Input impedance is 30kΩ in AM mode & 100kΩ in FM mode. The input coupling capacitor is 0.22μF. Cutoff frequency is 55Hz for AM & 7Hz for FM.

Panasonic

■ 6932852 0013713 520 **■**

■ Pin Descriptions (Continue)

Pin No.	Pin Name	DC Voltage	Equivalent Circuit	Description
13	AM Hi-Cut	0.4V	70000000000000000000000000000000000000	Capacitor at pin 13 and output impedance of pin 9 decides the input impedance of pin 13. Pin 13 is joined to GND by low impedance in AM mode. High-cut frequency is 4.8kHz. In FM mode, pin 13 is high impedance.
14	MPX Phase Detector LPF	AM 5V FM 1.4V (Stereo) FM 0V (Mono)	Vcc ΔM 1k FM 14 +2.2μ + 1μ ST	Used as switch for FM/AM & force mono. Please use discrete parts for LPF. If discrete parts are not used, the characteristics for THD & S/N in stereo mode will be poor. When switch is open, FM stereo mode. When switch is GND, FM mono mode. When switch is V _{CC} , AM Mode. Please maintain this switching condition at 0.5V & below for FM mono mode. For AM, use 2.5V & above. Current in AM mode from V _{CC} to pin 14 is 800µA. When pin 14 is switched to GND, there is no current.
15	vco	AM 0V FM 76kHz Oscillation		Oscillation of this circuit is 76kHz, determined by external resistor & capacitor. For VCO adjustment, please join 330kΩ between pin 16 & GND. Adjust VCO range to 38kHz±100Hz. The 470pF is a styrole/polypropylene film capacitor for guarantee of temperature characteristics & limits.
16	Stereo LED Driver and VCO monitor	AM 3.3V FM 0.13V (Stereo) FM 4.2V (Mono)	8 V _{CC} \$1k \$330k 300 3.6k	Current capability is 30mA maximum. Usable LED current is 4mA . For VCO monitor, please join $330\text{k}\Omega$ resistor to GND. Only this pin can be connected to 12V via $1\text{k}\Omega$ pull-up resistor.
5	Vcc			V _{CC} for FM stage Connect centre pin of ceramic filter to this pin.
17	V _{cc}	5V		
18	GND	0V		

■ 6932852 0013714 467 **■**

电查网 www.ic5.cn

地球上最全的电子元器件资料查询网站,1500多万种型·与主流厂商同步更新。没错,这就是电查网!!!